If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2-9k-136=0
a = 1; b = -9; c = -136;
Δ = b2-4ac
Δ = -92-4·1·(-136)
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-25}{2*1}=\frac{-16}{2} =-8 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+25}{2*1}=\frac{34}{2} =17 $
| -3(x6)^2+12=-27 | | x^2+10x=-100 | | 8=2w# | | 5^(2x-3)=45 | | -7x=3-10x | | -8-4x=-4-2x | | x2−7x=−4 | | 2g-4=-6 | | -4+2x=28 | | n+-9=-12 | | H=-2t+7t+4 | | -4+2x=-42 | | -114p-3=21 | | 5c+6=180 | | 7(d+1)=7 | | 5x+1+3x=33 | | 38=(2)(3.14)(r) | | 2/x=4/2x=2 | | y^2=49/121 | | 7z-4z+5z-2z=12 | | 8x/24=452/24 | | 11k+6k-16k=9 | | 6s+2(2+4)=2(s-2)-4 | | 18m-16m+4=18 | | 13v+18=18 | | 4s-2s-s+1=13 | | 5x+60=6x+60 | | -6.6x=4.6 | | 8s+17=180 | | 1÷8+c=4÷5 | | 9c+3c-11c=13 | | 42x-1=1/16= |